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Introduction and problem statement 
 
 

 

• Economic and financial stage of a firm cannot be captured by dichotomous thinking 

(bankrupt & non-bankrupt) 

 

• This was recognized relatively early in research (Altman, 1968; Edmister, 1972) 

 

• Degree of corporate health can instead be explained by a continuum between the 

extremes bankrupt and healthy, where a company moves steadily in-between both 

states (Cestari, Risaliti & Pierotti, 2013; Haber, 2005; Keasey & Watson, 1991; Ward, 1999) 

 

• Despite of several years in research this continuum and the evolution of corporate crisis 

as well as the occurrence of different stages of corporate health are not clearly 

measureable nor have been understood (Platt & Platt, 2008, p. 132; Pretorius, 2009) 
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Relevance and aim of the study 
 
 

 

Several motivations for the study supporting the relevance: 

1. Potential of a company to go into bankruptcy is a kind of market imperfection, affecting valuation 

properties in theoretical and empirical sense (Altman, 1969, p. 888) 

2. Insolvency rate of a state reflects development and robustness of the economy (McKee, 2000, p. 

159) 

3. Early prediction of corporate crises could lead to better allocation of resources and liquidity 

provided by the market (McKee, 2003, p. 573-576; McKee, 1995, p. 30) 

4. Early prediction of corporate crises and potential insolvency would be helpful for investors, providing 

liquidity to distressed companies in order to achieve future returns (Altman & Hotchkiss, 2006, p. 46; 

Moyer, 2005, p. 8) 

 

Aim of the study: 

• Division of companies into three states of corporate health (healthy, successfully and 

unsuccessfully recovered) 

• Detect and explain differences between these types of firms using accounting ratios, industry-

related accounting ratios and a proxy for insolvency rate of the industry 
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Methodology and research design 
 
 

Selection of potential discriminating variables based on literature review 
(Accounting ratios, age of the firm, industry-related accounting ratios & GDPgrowth of industry as proxy for insolvency rate of 

industry [Altman et al. 2008, p. 229]; selected ratios of profitability were adjusted for yearly inflation) 

Winsorization of data 
(proposed by Löffler & Posch, 2006, p. 15-19 in order to increase model quality and to eliminate extreme deviations from 

normality) 

Descriptive statistics and tests for differences 
(using mean, median and standard deviation; test for differences to identify the most important risk drivers as proposed by 

Porath, 2011, p. 32 using U-test, t-test, ANOVA and H-test) 

Principal component analysis 
(check for redundancy of data and to avoid multicollinearity in accordance with Afifi, May & Clark, 2003, p. 274; Chan, 2006, p. 

56 and Klecka, 1980, p. 11) 

Computation of linear discriminant functions 
(in order to differentiate between the different types of companies and to detect the risk drivers) 
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Literature review (1/3) 
 
 

 

• Different methods used in research to construct insolvency prediction models (e.g. linear 

discriminant analysis, logistic regression neural networks, recursive partitioning etc.) 

 

• Many studies used failure, bankruptcy, distress and insolvency were set equal to legal 

description of insolvency (e.g. Altman, 1968; Beaver, 1966; Mensah, 1984; Zmijewski, 1984; Shumway, 

2001; Pang & Kogel, 2013; etc.) 

 

• Mostly studies therefore focused on the dichotomous thinking (bankrupt vs. non-bankrupt; 

distressed vs. non-distressed; insolvent vs. solvent) 

 

• Several studies can be found, where the behaviour in-between the dichotomous thinking 

were conducted in order to observe and explain different degrees of corporate health (e.g. 

Barniv, Agarwal & Leach, 2002; Gilbert, Menon & Schwartz, 1990; Lau, 1987; Moulton & Thomas, 1993; Tsai, 2013; 

Wilson, Chong & Peel, 1995; Whitaker, 1999 etc.) 
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Literature review (2/3) 
 
 

 

• The studies show that it is in most cases difficult to distinguish reliably between the different 

types of corporate health 

 

• Authors used different definitions of “distress” etc., so that a comparison between the studies 

is almost impossible and this indicates that our actual knowledge and understanding about 

the crisis evolution process is limited and relatively low 

 

• There is lack of knowledge as to how the different stages of corporate health can be reliably 

defined and economically explained (Pretorius, 2009) 

 

• There is no single, accepted definition in research and practice of the stages of (financial) 

distress and recovery (Platt & Platt, 2008, p. 132; Pretorius, 2009) 

 

• The findings emphasize the need for additional research in order to better understand the 

crisis evolution process 
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Literature review (3/3) 
 
 Definitions concerning corporate stages Main results Reference 

Introduction of five states [financially stable firms = stage 0; firms omitting 

or reducing dividend payment = state 1; firms in technical default and in 

default on loan payments = state 2; protection under Chapter X or XI = state 

3; and bankrupt or liquidated firms = state 4] 

Certain states can be predicted well, whereas others are quite difficult to 

predict 
Lau (1987) 

Comparison of bankrupt and non-bankrupt as well as bankrupt and 

distressed firms; distress was defined as the occurrence of negative 

cumulative earnings over any consecutive three year period between 1972 

and 1983 

Different indicators were relevant to distinguish between the different 

types of firms; a separation between bankrupt and distressed is more 

difficult than a segregation between bankrupt and non-bankrupt 

companies 

Gilbert, Menon & Schwartz 

(1990) 

Non-failed firms, failed and distressed-acquired firms 

Their model provided an accuracy of 98.2 percent for the three states; 

the differentiation between failed and distressed acquired was very 

difficult and indicates that both types of firms have common 

characteristics 

Wilson, Chong & Peel (19995) 

Non-acquired distressed, acquired distressed and non-distressed 

companies; distress was defined as the situation where a firm exhibited at 

least one of the following characteristics: debt default, debt renegotiation 

attempts and/or an inability to meet fixed payment obligations on debt 

Different predictors were relevant to divide between the different types 

of firms; the distinction between distressed acquired and distressed non-

acquired remained difficult 
Theodossiou et al. (1996) 

Distressed and recovered firms; financial distress was seen to be pre-

existing, when the cash flow was less than the current maturity of long-term 

debt; recovery was defined as the situation where a firm´s cash flow is 

greater than the current maturity of long term debt 

Management actions are a significant factor for an improvement in 

industry-adjusted market value; management actions are not relevant, 

when distress is caused by a general decline of economic conditions in 

the industry 

Whitaker (1999) 

Investigation of failure process, using the change of operational cash flow 

from positive to negative 

Higher financial leverage is positively associated with default; default has 

a significant association with business failure; certain states are closely 

associated to each other 

Turetsky & McEwen (2001) 

Application of Taffler´s Z-score (1983, 1984) to assign firms as recovered and 

non-recovered; recovery was defined as the situation where a firm 

exhibited two consecutive years of positive Z-scores 

Both types of firms can be relatively well distinguished by using 

profitability ratios; recovered firms showed significantly better values in 

these ratios when compared to non-recovered firms 

Sudarsanam & Lai (2001) 
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Hypotheses and research questions 
 
 

 

Hypotheses: 

H 1: Inflation-adjusted accounting ratios can improve the accuracy and performance of prediction models. 

[in some studies the consideration of inflation as explanatory variables for insolvencies increased prediction accuracy of models – e.g. 

Bartley & Boardman, 1990; Butera & Faff, 2006; Gudmundsson, 2002; Liou & Smith, 2007; Tirapat & Nittayagasetwat, 1999; however, 

no study was found where inflation-adjusted ratios were applied to the stages of distress and recovery, so that a new design was tried 

within this study] 

 

H 2: Industry-related accounting ratios can improve the accuracy and performance of prediction models. 

[based on Edmister, 1972 and Lau, 1987 the accounting ratios for the firms were set into relation to the median value of 

the respective accounting ratio of their industry; the used approach was not tested for firms in distress and recovery 

before] 

 

Research questions: 

• Which variables are most suitable to explain the differences between the three types of companies? 

• How relevant are industry-related accounting variables in the prediction of the two types of recovery? 

• Can the implicit consideration of the industry insolvency rate (here replicated by the variable 

GDPgrowth) help to increase the prediction accuracy and performance of models? 

 

http://firebird.int.fh-kufstein.ac.at:8080/intra/org/formulare/download/resolveUid/403b35ed400cce694519e4d5f84852cc
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Definitions and sample description 
 
 

Development of distress indicator NITAinfl. Number of 

identified 

companies   2007 2008 2009 2010 

Unsuccessful recovered (Group = 0) - - + - 47 

Successful recovered (Group = 1) - - + + 64 

Healthy (Group = 2) + + + + 39 

Yearly inflation rate 2.2 % 3.2 % 0.5 % 1.9 %   

The industry classes were based on the Austrian ÖNACE 2008 code and contain: B = Mining and quarrying, C = Manufacturing, D = Electricity, gas, steam and air condition supply, E = water supply, sewerage, 
waste management and remediation activities, F = Construction, G = Wholesale and retail trade and repair of motor vehicles and motorcycles ,  H = Transporting and storage, I = Accommodation and food 
service activities , J = Information and communication, L = Real estate activities,    M = Professional, scientific and technical activities, and N = Administrative and support service activities. 

Distress = two consecutive years of negative NITA adjusted for yearly inflation [in accordance to 

Krueger & Willard, 1991; figures without inflation provide distorted information (Bartley & Boardman, 1990, p. 68; Bulow & 
Shoven, 1982, p. 234; Dearden, 1981, p. 8), so that correction for inflation seems appropriate to determine the „real“ 
economic and financial situation of the firm] 

 
Recovery = two consecutive years of positive NITA adjusted for yearly inflation [similar to the 

concept of Jostarndt & Sautner, 2008; their distress and recovery indicator was interest coverage based on EBIT] 

 
Adjustment for inflation based on Coulthurst, 1986, p. 33; Solnik & McLeavey, 2009, p. 43: 

ireal =
1 + inominal

1 + inflation rate
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Main results (Part I) 
 
 

• no higher accuracy and 
performance, when inflation-
adjusted variables are used 
(similar to Norton & Smith, 1979) 
 

• a division between the two 
types of recovered firms is 
easier than to divide between 
unsuccessfully recovered and 
healthy firms 
 

• The prediction accuracy two 
years after detection of distress 
is much higher than the first 
year after distress 
 

• Healthy and successfully 
recovered firms are having a 
higher profitability and equity 
base compared to 
unsuccessfully recovered firms 

**) statistical significance on the 1 percent level; *) statistical significance on the 5 percent level 

http://firebird.int.fh-kufstein.ac.at:8080/intra/org/formulare/download/resolveUid/403b35ed400cce694519e4d5f84852cc
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Main results (Part II) 
 
 

**) statistical significance on the 1 percent level; *) statistical significance on the 5 percent level 

• Inclusion of industry-related 
variables is beneficial to 
increase explained variance, 
accuracy and performance 
(Butera & Faff, 2006; Chava & Jarrow, 
2004; Thornhill & Amit, 2003) 
 

• a comparison of profitability to 
industry median of profitability 
seems helpful for higher 
explained variance 

http://firebird.int.fh-kufstein.ac.at:8080/intra/org/formulare/download/resolveUid/403b35ed400cce694519e4d5f84852cc
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Final conclusions and answers to research questions 
 
 

 

• Firms with higher profitability are more likely to be assigned as healthy and/or 

successfully recovered (Begley, Ming & Watts, 1996; Doumpos & Zopounidis, 1998; Situm, 2015a; Sudarsanam 

& Lai, 2001) 

 

• Firms exhibiting a higher equity ratio are more likely to be assigned as healthy and/or 

successfully recovered (Bartual et al., 2012; Grunert, Norden & Weber, 2005; Pompe & Bilderbeek, 2005) 

 

• Firms exhibiting higher profitability in comparison to industry mean are more 

likely to be assigned as healthy and or/successfully recovered (Edmister, 1972; Chava & Jarrow, 

2004; Hoshi, Kashyap & Scharfstein, 1990; Thornhill & Amit, 2003) 

 

• GDPgrowth (replicating insolvency rate of the industry as proposed by Altman et al. 2008, p. 229) 

was not statistically significant at all  
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Hypotheses testing 
 
 

No. Hypothesis Test result Test procedure 

H1 

The consideration of 

inflation-adjusted 

accounting ratios can 

improve the accuracy and 

performance of prediction 

models. 

Rejected 

Comparison of explained variances for the different models as 

well as the accuracies, type I and type II errors; additionally the 

Gini-coefficients were compared showing the same values for 

the period two years and one year after distress (when no 

industry-related variables are assumed), but dissimilar Gini-

coefficients for the period one year after distress; due to 

statistical insignificance of the AUC the superiority of inflation-

adjusted models cannot be concluded 

H2 

The consideration of 

industry-related accounting 

ratios can improve the 

accuracy and performance 

of prediction models. 

Not falsified 

Comparison of explained variances for models with and without 

industry-related variables; the inclusion of such variables led to 

reduction of type I errors (an unsuccessfully recovered firm is 

assigned as successfully recovered or healthy) and to higher 

explanatory power of the models; generally the accuracies of the 

models increased 
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Limitations of the study 
 
 

 

• Variance(covariance) matrixes of the groups were not equal, so that a theoretical pre-

condition for proper application of linear discriminant analysis was violated (Afifi, May & 

Clark, 2003, p. 274; Atkinson, Riani & Cerioli, 2004, p. 300); however, this should be of minor 

relevance if amount of discriminators and the differences in group sizes are low (Klecka, 

1980, p. 61) 

 

• Even of data was winsorized non-normality of data was not a given, which is another 

theoretical pre-condition for proper application of linear discriminant analysis (Klecka, 1980, 

p. 61; Subhash, 1996, p. 263); nevertheless, a small deviation form normally can be accepted as 

this does not influcence classification accuracy of forecasting models (Hopwood, McKeown & 

Mutchler, 1988; Feldesman, 2002; Silva, Stam & Neter, 2002) 

 

• Within this study a relatively small sample size is a given, which may have influenced 

model quality and explanatory power of the models 
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