Institute for Corporate Restructuring

University of Applied Sciences Kufstein

The divergence between corporate success and crisis: The separability of recovered and healthy companies

July 2016

Introduction and problem statement

- Economic and financial stage of a firm cannot be captured by **dichotomous** thinking (bankrupt & non-bankrupt)
- This was recognized relatively early in research (Altman, 1968; Edmister, 1972)
- Degree of corporate health can instead be explained by a **continuum** between the extremes bankrupt and healthy, where a company moves steadily in-between both states (Cestari, Risaliti & Pierotti, 2013; Haber, 2005; Keasey & Watson, 1991; Ward, 1999)
- Despite of several years in research this continuum and the evolution of corporate crisis as well as the occurrence of different stages of corporate health are **not** clearly **measureable nor** have been **understood** (Platt & Platt, 2008, p. 132; Pretorius, 2009)

Relevance and aim of the study

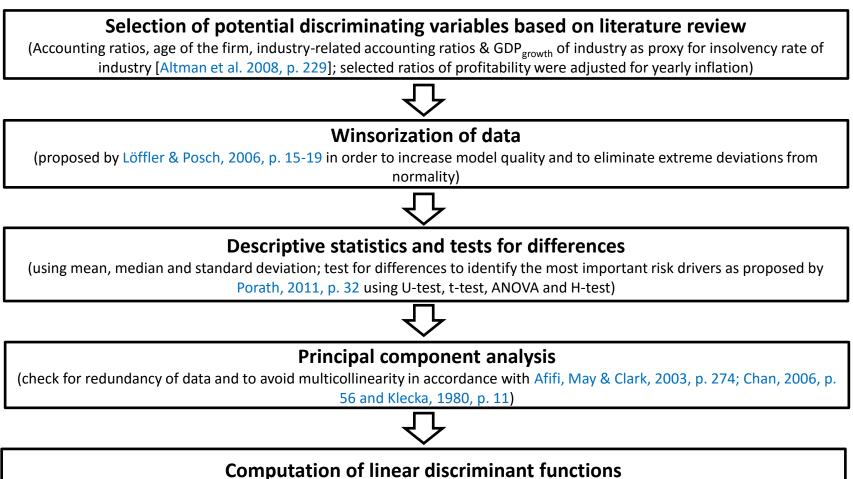
Several motivations for the study supporting the relevance:

- 1. Potential of a company to go into bankruptcy is a kind of **market imperfection**, affecting valuation properties in theoretical and empirical sense (Altman, 1969, p. 888)
- 2. Insolvency rate of a state reflects **development** and **robustness** of the economy (McKee, 2000, p. 159)
- 3. Early prediction of corporate crises could lead to better **allocation** of **resources** and **liquidity** provided by the market (McKee, 2003, p. 573-576; McKee, 1995, p. 30)
- Early prediction of corporate crises and potential insolvency would be helpful for investors, providing liquidity to **distressed companies** in order to achieve future returns (Altman & Hotchkiss, 2006, p. 46; Moyer, 2005, p. 8)

Aim of the study:

- Division of companies into three states of corporate health (healthy, successfully and unsuccessfully recovered)
- **Detect** and **explain differences** between these types of firms using accounting ratios, industryrelated accounting ratios and a proxy for insolvency rate of the industry

Methodology and research design



(in order to differentiate between the different types of companies and to detect the risk drivers)

Literature review (1/3)

- **Different methods** used in research to construct insolvency prediction models (e.g. linear discriminant analysis, logistic regression neural networks, recursive partitioning etc.)
- Many studies used failure, bankruptcy, distress and insolvency were set equal to legal description of insolvency (e.g. Altman, 1968; Beaver, 1966; Mensah, 1984; Zmijewski, 1984; Shumway, 2001; Pang & Kogel, 2013; etc.)
- Mostly studies therefore focused on the **dichotomous thinking** (bankrupt vs. non-bankrupt; distressed vs. non-distressed; insolvent vs. solvent)
- Several studies can be found, where the behaviour in-between the dichotomous thinking were conducted in order to observe and explain different degrees of corporate health (e.g. Barniv, Agarwal & Leach, 2002; Gilbert, Menon & Schwartz, 1990; Lau, 1987; Moulton & Thomas, 1993; Tsai, 2013; Wilson, Chong & Peel, 1995; Whitaker, 1999 etc.)

Literature review (2/3)

- The studies show that it is in most cases difficult to distinguish reliably between the different types of corporate health
- Authors used different definitions of "distress" etc., so that a comparison between the studies is almost **impossible** and this indicates that our actual knowledge and understanding about the crisis evolution process is **limited** and **relatively low**
- There is **lack of knowledge** as to how the different stages of corporate health can be reliably defined and economically explained (Pretorius, 2009)
- There is **no** single, accepted definition in research and practice of the stages of (financial) distress and recovery (Platt & Platt, 2008, p. 132; Pretorius, 2009)
- The findings emphasize **the need** for additional research in order to better understand the crisis evolution process

Literature review (3/3)

Definitions concerning corporate stages	Main results	Reference	
Introduction of five states [financially stable firms = stage 0; firms omitting	Certain states can be predicted well, whereas others are quite difficult to		
or reducing dividend payment = state 1; firms in technical default and in	predict	1 (1007)	
default on loan payments = state 2; protection under Chapter X or XI = state		Lau (1987)	
3; and bankrupt or liquidated firms = state 4]			
Comparison of bankrupt and non-bankrupt as well as bankrupt and	Different indicators were relevant to distinguish between the different		
distressed firms; distress was defined as the occurrence of negative	types of firms; a separation between bankrupt and distressed is more	Gilbert, Menon & Schwartz	
cumulative earnings over any consecutive three year period between 1972	difficult than a segregation between bankrupt and non-bankrupt	(1990)	
and 1983	companies		
	Their model provided an accuracy of 98.2 percent for the three states;		
Non-failed firms failed and distances a serviced firms	the differentiation between failed and distressed acquired was very	Wilson Chang & Deal (1000E)	
Non-failed firms, failed and distressed-acquired firms	difficult and indicates that both types of firms have common	Wilson, Chong & Peel (19995)	
	characteristics		
Non-acquired distressed, acquired distressed and non-distressed	Different predictors were relevant to divide between the different types		
companies; distress was defined as the situation where a firm exhibited at	of firms; the distinction between distressed acquired and distressed non-	Theodosciou at al. (1006)	
least one of the following characteristics: debt default, debt renegotiation	acquired remained difficult	Theodossiou et al. (1996)	
attempts and/or an inability to meet fixed payment obligations on debt			
Distressed and recovered firms; financial distress was seen to be pre-	Management actions are a significant factor for an improvement in		
existing, when the cash flow was less than the current maturity of long-term	industry-adjusted market value; management actions are not relevant,	Whiteker (1000)	
debt; recovery was defined as the situation where a firm's cash flow is	when distress is caused by a general decline of economic conditions in	Whitaker (1999)	
greater than the current maturity of long term debt	the industry		
Investigation of failure process, using the change of operational cash flow	Higher financial leverage is positively associated with default; default has		
from positive to negative	a significant association with business failure; certain states are closely	Turetsky & McEwen (2001)	
	associated to each other		
Application of Taffler's Z-score (1983, 1984) to assign firms as recovered and	Both types of firms can be relatively well distinguished by using		
non-recovered; recovery was defined as the situation where a firm	profitability ratios; recovered firms showed significantly better values in	Sudarsanam & Lai (2001)	
exhibited two consecutive years of positive Z-scores	these ratios when compared to non-recovered firms		

Hypotheses and research questions

Hypotheses:

H 1: Inflation-adjusted accounting ratios can improve the accuracy and performance of prediction models. [in some studies the consideration of inflation as explanatory variables for insolvencies increased prediction accuracy of models – e.g. Bartley & Boardman, 1990; Butera & Faff, 2006; Gudmundsson, 2002; Liou & Smith, 2007; Tirapat & Nittayagasetwat, 1999; however, no study was found where inflation-adjusted ratios were applied to the stages of distress and recovery, so that a new design was tried within this study]

H 2: Industry-related accounting ratios can improve the accuracy and performance of prediction models. [based on Edmister, 1972 and Lau, 1987 the accounting ratios for the firms were set into relation to the median value of the respective accounting ratio of their industry; the used approach was not tested for firms in distress and recovery before]

Research questions:

- Which variables are most suitable to explain the differences between the three types of companies?
- How relevant are industry-related accounting variables in the prediction of the two types of recovery?
- Can the implicit consideration of the industry insolvency rate (here replicated by the variable GDP_{growth}) help to increase the prediction accuracy and performance of models?

Definitions and sample description

Distress = two consecutive years of negative NITA adjusted for yearly inflation [in accordance to Krueger & Willard, 1991; figures without inflation provide distorted information (Bartley & Boardman, 1990, p. 68; Bulow & Shoven, 1982, p. 234; Dearden, 1981, p. 8), so that correction for inflation seems appropriate to determine the "real" economic and financial situation of the firm]

Recovery = two consecutive years of positive NITA adjusted for yearly inflation [similar to the concept of Jostarndt & Sautner, 2008; their distress and recovery indicator was interest coverage based on EBIT]

Adjustment for inflation based on Coulthurst, 1986, p. 33; Solnik & McLeavey, 2009, p. 43:

	Development of distress indicator NITA _{infl.}			Number of	
					identified
	2007	2008	2009	2010	companies
Unsuccessful recovered (Group = 0)	-	-	+	-	47
Successful recovered (Group = 1)	-	-	+	+	64
Healthy (Group = 2)	+	+	+	+	39
Yearly inflation rate	2.2 %	3.2 %	0.5 %	1.9 %	

 $i_{real} = \frac{(1 + i_{nominal})}{(1 + inflation rate)}$

The industry classes were based on the Austrian ÖNACE 2008 code and contain: B = Mining and quarrying, C = Manufacturing, D = Electricity, gas, steam and air condition supply, E = water supply, sewerage, waste management and remediation activities, F = Construction, G = Wholesale and retail trade and repair of motor vehicles and motorcycles, H = Transporting and storage, I = Accommodation and food service activities, J = Information and communication, L = Real estate activities, M = Professional, scientific and technical activities, and N = Administrative and support service activities.

Main results (Part I)

	Application of accounting ratios		Application of inflation adjusted accounting ratios	
Part A: Measures	0 vs. 1	0 vs. 2	0 vs. 1	0 vs. 2
Explained Variance (in %)	43.031	38.161	43.031	38.161
Wilks Lambda (Sign.)	0.000**	0.000**	0.000**	0.000**
Box´s M (Sign.)	0.000**	0.000**	0.000**	0.000**
Part B: Application on two years afte	er distress (t+2)			
Accuracy (in %)	91.892	87.209	91.892	87.209
Type I error (in %)	2.128	4.255	2.128	4.255
Type II error (in %)	12.500	23.077	12.500	23.077
Part C: Application on one year after distress (t+1)				
Accuracy (in %)	44.144	45.349	47.748	43.023
Type I error (in %)	63.830	55.319	72.340	68.085
Type II error (in %)	50.000	53.846	37.500	43.590
Part D: Performance measures				
AUC _(t+2)	0.982**	0.922**	0.982**	0.922**
Gini-Coefficient _(t+2)	0.964	0.844	0.964	0.844
AUC _(t+1)	0.455	0.488	0.455	0.488
Gini-Coefficient _(t+1)	-0.090	-0.023	-0.090	-0.023
Part E: Explanatory variable				
NIS	1.880	1.874	-	-
NIS _{infl.}	-	-	1.916	1.910
EBITTA	19.035	12.958	-	-
EBITTA _{infl.}	-	-	19.397	13.204
TETA	1.085	1.467	1.085	1.467
Constant	-1.116	-1.013	- 0.718	- 0.732

KufsteinTirol

- no higher accuracy and performance, when inflationadjusted variables are used (similar to Norton & Smith, 1979)
- a division between the two types of recovered firms is easier than to divide between unsuccessfully recovered and healthy firms
- The prediction accuracy two years after detection of distress is much higher than the first year after distress
- Healthy and successfully recovered firms are having a higher profitability and equity base compared to unsuccessfully recovered firms

**) statistical significance on the 1 percent level; *) statistical significance on the 5 percent level

Main results (Part II)

	Application of ac	counting ratios &	Application of inflation adjusted		
	industry-related ratios		accounting ratios & industry-related ratios		
Part A: Measures	0 vs. 1	0 vs. 2	0 vs. 1	0 vs. 2	
Explained Variance (in %)	43.226	40.192	43.225	39.908	
Wilks Lambda (Sign.)	0.000**	0.000**	0.000**	0.000**	
Box´s M (Sign.)	0.000**	0.000**	0.000**	0.000**	
Part B: Application on two years aft	er distress (t+2)				
Accuracy (in %)	92.793	88.372	92.793	87.209	
Type I error (in %)	2.128	2.128	2.128	4.255	
Type II error (in %)	10.938	23.077	10.938	23.077	
Part D: Performance measures					
AUC _(t+2)	0.977**	0.932**	0.977**	0.930**	
Gini-Coefficient _(t+2)	0.955	0.865	0.955	0.860	
AUC _(t+1)	0.476	0.498	0.509	0.540	
Gini-Coefficient _(t+1)	-0.049	-0.005	0.019	0.080	
Part E: Explanatory variable					
NIS	1.780	1.989	-	-	
NISinfl.	-	-	1.812	2.012	
EBITTA	18.039	1.921	-	-	
EBITTAinfl.	-	-	18.375	1.537	
TETA	1.012	1.419	1.013	1.379	
EBITSind.	0.083	-	-	-	
EBITTAind.	-	0.854	-	-	
EBITSind. infl.	-	-	0.086	-	
EBITTAind. Infl.			-	0.909	
Constant	-1.131	-1.021	- 0.725	- 0.714	

- Inclusion of industry-related variables is **beneficial** to increase explained variance, accuracy and performance (Butera & Faff, 2006; Chava & Jarrow, 2004; Thornhill & Amit, 2003)
- a comparison of **profitability** to industry median of profitability seems helpful for higher explained variance

**) statistical significance on the 1 percent level; *) statistical significance on the 5 percent level

Final conclusions and answers to research questions

- Firms with higher **profitability** are more likely to be assigned as healthy and/or successfully recovered (Begley, Ming & Watts, 1996; Doumpos & Zopounidis, 1998; Situm, 2015a; Sudarsanam & Lai, 2001)
- Firms exhibiting a higher **equity ratio** are more likely to be assigned as healthy and/or successfully recovered (Bartual et al., 2012; Grunert, Norden & Weber, 2005; Pompe & Bilderbeek, 2005)
- Firms exhibiting higher profitability in comparison to industry mean are more likely to be assigned as healthy and or/successfully recovered (Edmister, 1972; Chava & Jarrow, 2004; Hoshi, Kashyap & Scharfstein, 1990; Thornhill & Amit, 2003)
- GDP_{growth} (replicating insolvency rate of the industry as proposed by Altman et al. 2008, p. 229)
 was **not statistically significant** at all

Hypotheses testing

No.	Hypothesis	Test result	Test procedure
H1	The consideration of inflation-adjusted accounting ratios can improve the accuracy and performance of prediction models.	Rejected	Comparison of explained variances for the different models as well as the accuracies, type I and type II errors; additionally the Gini-coefficients were compared showing the same values for the period two years and one year after distress (when no industry-related variables are assumed), but dissimilar Gini- coefficients for the period one year after distress; due to statistical insignificance of the AUC the superiority of inflation- adjusted models cannot be concluded
H2	The consideration of industry-related accounting ratios can improve the accuracy and performance of prediction models.	Not falsified	Comparison of explained variances for models with and without industry-related variables; the inclusion of such variables led to reduction of type I errors (an unsuccessfully recovered firm is assigned as successfully recovered or healthy) and to higher explanatory power of the models; generally the accuracies of the models increased

Limitations of the study

- Variance(covariance) matrixes of the groups were **not equal**, so that a theoretical precondition for proper application of linear discriminant analysis was violated (Afifi, May & Clark, 2003, p. 274; Atkinson, Riani & Cerioli, 2004, p. 300); however, this should be of **minor** relevance if amount of discriminators and the differences in group sizes are low (Klecka, 1980, p. 61)
- Even of data was winsorized non-normality of data was not a given, which is another theoretical pre-condition for proper application of linear discriminant analysis (Klecka, 1980, p. 61; Subhash, 1996, p. 263); nevertheless, a small deviation form normally can be accepted as this does not influcence classification accuracy of forecasting models (Hopwood, McKeown & Mutchler, 1988; Feldesman, 2002; Silva, Stam & Neter, 2002)
- Within this study a relatively **small sample size** is a given, which may have influenced model quality and explanatory power of the models

Contact data

Prof. (FH) Dr. Dr. Mario Situm, MBA Institute für Corporate Restructuring University of Applied Sciences, Kufstein Andreas Hofer Straße 7 | 6330 Kufstein mario.situm@fh-kufstein.ac.at http://restrukturierung.fh-kufstein.ac.at http://dr-situm.com

This research project was sponsored by Tiroler Wissenschaftsfonds

- Abidali, A. F., & Harris, F. (1995). A methodology for predicting company failure in the construction industry. *Construction Management and Economics*, *13(3)*, 189–196.
- Afifi, A., May, S., & Clark. V. A. (2003). *Computer-aided multivariate analysis* (4th edition). Boca Raton, FL: Chapman & Hall.
- Agarwal, A. (1999). Abductive networks for two-group classification: A comparison with neural networks. *The Journal of Applied Business Research*, *15*(*2*), 1–12.
- Agarwal, V., & Taffler, R. J. (2007). Twenty-five years of the Taffler z-score model: Does it really have predictive ability?. *Accounting and Business Research*, *37*(*4*), 285–300.
- Ahn, B. S., Cho, S. S., & Kim, C. Y. (2000). The integrated methodology of rough set theory and artificial neural network for business failure prediction. *Expert Systems with Applications*, *18*(2), 65–74.
- Aktan, S. (2011). Application of machine learning algorithms for business failure prediction. *Investment Management and Financial Innovations*, *8*(2), 52–65.
- Altman, E. I., Sabato, G., & Wilson, N. (2010). The value of non-financial information in small and medium-sized enterprise risk management. *The Journal of Credit Risk, 6(2),* 1–33.
- Altman, E. I., Brady, B., Resti, A., & Sironi, A. (2008). The link between default and recovery rates: Theory, empirical evidence, and implications. In N. Wagner (Ed.), *Credit risk: Models, derivatives, and management* (pp. 211-234). Boca Raton, FL: Taylor & Francis.
- Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt. Hoboken, NJ: John Wiley.
- Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977), ZETA[™] analysis: A new model to identify bankruptcy risk of corporations. *Journal of Banking and Finance*, *1*(*1*), 29–54.
- Altman, E. I. (1969). Corporate bankruptcy potential, stockholder returns and share valuation. *The Journal of Finance, 24(5)*, 887-900.
- Altman E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. *The Journal of Finance, 23(4),* 589–609.

- Anandarajan, M., Lee, P., & Anandarajan, A. (2001). Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks. *International Journal of Intelligent Systems in Accounting, Finance & Management, 10(2),* 69–81.
- Anderson, R. (2007). *The credit scoring toolkit: Theory and practice for retail credit risk management and decision automation*. Oxford, England: Oxford University Press UK.
- Anyane-Ntow, K. (1991). Accounting information and its relationship to corporate financial distress process. *The Journal of Applied Business Research*, 7(3), 29–35.
- Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. *IEEE Transactions* on Neural Networks, 12(4), 929–935.
- Atkinson, A. C., Riani, M., & Cerioli, A. (2004). *Exploring multivariate data with the forward search*. New York, NY: Springer.
- Aziz, A., Emanuel, D. C., & Lawson, G. H. (1988). Bankruptcy prediction An investigation of cash flow based models. *Journal of Management Studies*, 23(5), 419-437.
- Aziz, A., & Lawson, G. H. (1989). Cash flow reporting and financial distress models: Testing of hypotheses. *Financial Management*, *18*(*1*), 55–63.
- Baetge, J., & Heitmann, C. (2000). Creating a fuzzy rule-based indicator for the review of credit standing. *Schmalenbach Business Review*, *52*, 318–343.
- Baetge, J., Beuter, H., & Feidicker, M. (1992). Kreditwürdigkeitsprüfung mit Diskriminanzanalyse. *Die Wirtschaftsprüfung, 24*, 749–761.
- Bahiraie, A., bt Ibrahim, N. A., & Azhar, A. K. M. (2009). On the predictability of risk box approach by genetic programming method for bankruptcy prediction. *American Journal of Applied Sciences, 6(9),* 1748–1757.
- Barniv, R., Agarwal, A., & Leach, R. (2002). Predicting bankruptcy resolution. *Journal of Business Finance & Accounting, 29(3-4)*, 497–520.
- Barniv, R., & Raveh, A. (1989). Identifying financial distress: A new nonparametric approach. *Journal of Business Finance & Accounting*, *16(3)*, 361–383.

- Bartley, J. W., & Boardman, C. M. (1990). The relevance of inflation adjusted accounting data to the prediction of corporate takeovers. *Journal of Business Finance & Accounting*, *17(1)*, 53-72.
- Bartual, C., Garcia, F., Gimenez, V., & Romero-Civera, A. (2012). Credit risk analysis: Reflection on the use of the logit model. *Journal of Applied Finance & Banking, 2(6),* 1–13.
- Bates, T. (1990). Entrepreneur human capital inputs and small Business longevity. *The Review of Economics and Statistics*, 72(4), 551–559.
- Beaver, W. H. (1968). Alternative accounting measures as predictors of failure. *The Accounting Review, 43(1),* 113–122.
- Beaver, W. H. (1966). Financial ratios as predictors of failure. *Journal of Accounting Research, 4 (Supplement),* 71–111.
- Begley, J., Ming, J., & Watts, S. (1996). Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models. *Review of Accounting Studies*, *1*, 267–284.
- Betts, J., & Belhoul, D. (1987). The effectiveness of incorporating stability measures in company failure models. *Journal of Business Finance & Accounting*, 14(3), 323–334.
- Blum, M. (1974). Failing company discriminant analysis. *Journal of Accounting Research*, *12(1)*, 1–25.
- Boritz, J. E., Kennedy, D. B., & Sun, J. Y. (2007). Predicting business failure in Canada. Accounting Perspectives, 6(2), 141–165.
- Boritz, J. E., Kennedy, D. B., & de Miranda e Albuquerque, A. (1995). Predicting corporate failure using a neural network approach. *Intelligent Systems in Accounting, Finance and Management, 4(2),* 95–111.
- Brabazon, A., & Keenan, P. B. (2004). A hybrid genetic model for the prediction of corporate failure. *Computational Management Science*, 1(3-4), 293 310.
- Bruse, H. (1978). Die Prognosefähigkeit von Kennzahlen bei verschiedenen Maßen für das Unternehmenswachstum. Zeitschrift für Betriebswirtschaft, 48, 138–152.
- Bryant, S. M. (1997). A case-based reasoning approach to bankruptcy prediction modeling. *Intelligent Systems in Accounting, Finance and Management, 6(3),* 195–214.
- Bulow, J. I., & Shoven, J. B. (1982). Inflation, corporate profits, and the rate of return to capital. In R. E. Hall (Ed.), *Inflation: Causes and effects* (pp. 233-260). Chicago: University of Chicago Press.

- Burns, R., & Burns, R. (2008). Business research methods and statistics using SPSS. London, England: Sage UK.
- Butera, G., & Faff, R. (2006). An integrated multi-model credit rating system for private firms. *Review of Quantitative Finance & Accounting*, *27(3)*, 311–340.
- Callejon, A. M., Casado, A. M., Fernández, M. A., & Peláez, J. I. (2013). A system of insolvency prediction for industrial companies using a financial alternative model with neural networks. *International Journal of Computational Intelligence Systems, 6(1),* 29–37.
- Casey, C., & Bartczak, N. (1985). Using operating cash flow data to predict financial distress: Some extensions. *Journal of Accounting Research, 23(1),* 384–401.
- Casey, C. J. (1980). Variation in accounting information load: The effect on loan officers' predictions of bankruptcy. *The Accounting Review, 55(1),* 36–49.
- Cestari, G., Risaliti, G., & Pierotti, M. (2013). Bankruptcy prediction models: Preliminary thoughts on the determination of parameters for the evaluation of effectiveness and efficiency. *European Scientific Journal, 9(16),* 265–290.
- Chalos, P. (1985). Financial distress: A comparative study of individual, model, and committee assessments. *Journal of Accounting Research*, *23(2)*, 527–543.
- Chan, Y. H. (2005). Biostatistics 303. Discriminant analysis. *Singapore Medical Journal, 46(2),* 54–62.
- Chancharat, N., Tian, G., Davy, P., McCrae, M. & Lodh, S. (2010). Multiple states of financially distressed companies: Tests using a competing risk-model. *Australasian Accounting Business and Finance Journal*, *4*(*4*), 27–44.
- Charalambous, C., Charitou, A., & Kaourou, F. (2000). Comparative analysis of artificial neural network models: Application in bankruptcy prediction. *Annals of Operations Research*, *99(1)*, 403-425.
- Charitou, A., Neophytou, E., & Charalambous, C. (2004). Predicting corporate failure: Empirical evidence for the UK. *European Accounting Review*, *13(3)*, 465–497.
- Chatterjee, S., Dhillon, U. S., & Ramirez, G. G. (1996). Resolution of financial distress: Debt restructurings via chapter 11, prepackaged bankruptcies, and workouts. *Financial Management*, *25(1)*, 5–18.
- Chatterjee, S., & Srinivasan, V. (1992). Graphical analysis and financial classification: A case study. *Managerial and Decision Economics*, *13(6)*, 527–537.

- Chaudhuri, A. (2013). Bankruptcy prediction using Bayesian, hazard, mixed logit and rough Bayesian models: A comparative analysis. *Computer and Information Science*, *6*(2), 103–125.
- Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. *Review of Finance*, 8(4), 537–569.
- Chen, J., Marshall, B. R., Zhang, J., & Ganesh, S. (2006). Financial distress prediction in China. *Review of Pacific Basin Financial Markets and Policies*, *9*(*2*), 317–336.
- Chen, K.H., & Shimerda, T. A. (1981). An empirical analysis of useful financial ratios. *Financial Management*, 10(1), 51 60.
- Chen, W.-S., & Du, Y.-K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. *Expert Systems with Applications*, *36*(2), 4075–4086.
- Cheng, W.-Y., Su, E., & Li, S.-J. (2006). A financial distress pre-warning study by fuzzy regression model of TSE-listed companies. *Asian Academy of Management Journal of Accounting and Finance, 2(2),* 75–93.
- Chi, L.-C., & Tang, T.-C. (2006). Bankruptcy prediction: Application of logit analysis in export credit risks. *Australian Journal of Management*, *31*(1), 17–27.
- Coats, P. K., & Fant, F. L. (1993). Recognizing financial distress patterns using a neural network tool. *Financial Management*, 22(3), 142–155.
- Coulthurst, N. J. (1986). Accounting for inflation in capital investment: The state of the art and science. Accounting and Business Research, 17(65), 33-42.
- Dakovic, R., Czado, C., & Berg, D. (2010). Bankruptcy prediction in Norway: A comparison study. *Applied Economic Letters*, 17(17), 1739–1746.
- Dambolena, I. G., & Khoury, S. J. (1980). Ratio stability and corporate failure. *The Journal of Finance, 35(4),* 1017–1026.
- Datta, S., & Iskandar-Datta, M. E. (1995). Reorganization and financial distress: An empirical investigation. *The Journal of Financial Research*, *18*(1), 15-32.
- Dearden, J. (1981). Facing facts with inflation accounting. *Harvard Business Review, July-August*, 8-16.
- Dietrich, J., Arcelus, F. J., & Srinivasan, G. (2005). Predicting financial failure: Some evidence from new Brunswick agricultural co-ops. *Annals of Public and Cooperative Economics*, *76*(2), 179–194.

- Dietrich, R. J. (1984). Discussion of methodological issues related to the estimation of financial distress prediction models. *Journal of Accounting Research, 22,* 83–86.
- Dimitras, A. I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. *European Journal of Operational Research*, *114(2)*, 263–280.
- Doumpos, M., & Zopounidis, C. (1998). A multicriteria discrimination method for the prediction of financial distress: The case of Greece. *Multinational Finance Journal*, *3*(2), 71–101.
- Du Jardin, P. (2009). Bankruptcy prediction models: How to choose the most relevant variables?. *Bankers, Markets and Investors, 98, January February*, 39–46.
- Edmister, R. O. (1972). An empirical test of financial ratio analysis for small failure prediction. *Journal of Financial and Quantitative Analysis, 7(2),* 1477–1493.
- Etheridge, H. L., & Sriram, R. S. (1997). A comparison of the relative costs of financial distress models: Artificial neural networks, logit and multivariate discriminant analysis. *Intelligent Systems in Accounting, Finance and Management, 6(3),* 235–248.
- Exler, M. & Situm, M. (2013). Früherkennung von Unternehmenskrisen: Systematische Zuordnung von Krisenfrüherkennungsindikatoren zu den unterschiedlichsten Krisenphasen eines Unternehmens. Krisen-, Sanierungs- und Insolvenzberatung, 9(4), 161-166.
- Fanning, K. M., & Cogger, K. O. (1994). A comparative analysis of artificial neural networks using financial distress prediction. Intelligent Systems in Accounting, Finance and Management, 3(4), 241–252.
- Fawcett, T. (2006). An introduction to ROC analysis. *Pattern Recognition Letters, 27(8)*, 861–874.
- Feldesman, M. R. (2002). Classification trees as an alternative to linear discriminant analysis. *American Journal of Physical Anthropology, 119(3), 257–275.*
- Foster, B. P., Ward, T. J., & Woodroof, J. (1998). An analysis of the usefulness of debt defaults and going concern opinions in bankruptcy risk assessment. *Journal of Accounting, Auditing & Finance, 13(3),* 351–371.
- Freund, J. E., & Perles, B. M. (2014). *Modern elementary statistics*. 12th ed., Essex, UK: Pearson.
- Frydman, H., Altman, E. I., & Kao, D.-L. (1985). Introducing recursive partitioning for financial classification: The case of financial distress. *The Journal of Finance, 40(1),* 269–291.

- Gebhardt, G. (1980). Insolvenzfrüherkennung aus aktienrechtlichen Jahresabschlüssen. Wiesbaden: Gabler.
- Gentry, J. A., Newbold, P., & Whitford, D. T. (1985). Classifying bankrupt firms with funds flow components. *Journal of Accounting Research*, *23(1)*, 146–160.
- Gilbert, L. R., Menon, K., & Schwartz, K. B. (1990). Predicting bankruptcy for firms in financial distress. *Journal of Business Finance & Accounting*, *17*(*1*), 161–171.
- Gombola, M. J., Haskins, M. E., Ketz, E. J., & Williams, D. D. (1987). Cash flow in bankruptcy prediction. *Financial Management*, *16*(*4*), 55–65.
- Gray, S., Mirkovic, A., & Ragunathan, V. (2006). The determinants of credit ratings: Australian evidence. *Australian Journal of Management*, *31(2)*, 333 354.
- Grice, J. S., & Dugan, M. T. (2001). The limitations of bankruptcy prediction models: Some cautions for the researcher. *Review of Quantitative Finance and Accounting*, *17*(*2*), 151-166.
- Grunert, J., Norden, L., & Weber, M. (2005). The role of non-financial factors in internal credit ratings. *Journal of Banking & Finance, 29(2),* 509–531.
- Grzybowski, M., & Younger, J. G. (1997). Statistical methodology: III. Receiver operating characteristic (ROC) curves. *Academic Emergency Medicine*, 4(8), 818-826.
- Gudmundsson, S. V. (2002). Airline distress prediction using non-financial indicators. *Journal of Air Transportation*, 7(2), 3–24.
- Haber, J. R. (2005). Assessing how bankruptcy prediction models are evaluated. *Journal of Business & Economics Research*, 3(1), 87–92.
- Hauser, R. P., & Booth, D. (2011). Predicting bankruptcy with robust logistic regression. *Journal of Data Science*, 9(4), 565–584.
- Hayes, S. K., Hodge, K. A., & Hughes, L. W. (2010). A study of the efficacy of Altman's Z to predict bankruptcy of speciality retail firms doing business in contemporary times. *Economics & Business Journal: Inquiries & Perspective, 3(1),* 122–134.
- Hensher, D. A., Jones, S., & Greene, W. H. (2007). An error component logit analysis of corporate bankruptcy and insolvency risk in Australia. *The Economic Record, 83 (260),* 86–103.

- Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. *Review of Accounting Studies*, *9*(1), 5–34.
- Ho, R. (2006). Handbook of univariate and multivariate data analysis and interpretation with SPSS. Boca Raton, FL: Chapman & Hall.
- Hodgin, R. F., & Marchesini, R. (2011). Financial distress models: How pertinent are sampling bias criticism?. *Journal of Applied Business and Economics*, *12(4)*, 29–35.
- Hol, S. (2007). The influence of the business cycle on bankruptcy probability. *International Transactions in Operational Research*, 14(1), 75–90.
- Hopwood, W., McKeown, J., & Mutchler, J. (1988). The sensitivity of financial distress prediction models to departures from normality. *Contemporary Accounting Research*, *5*(1), 284–298.
- Hoshi, T., Kashyap, A., & Scharfstein, D. (1990). The role of banks in reducing the costs of financial distress in Japan. *Journal* of Financial Economics, 27(1), 67–88.
- Hossein, R. D., Seyed, M. H., & Rasoul, T. (2013). Using decision tree model and logistic regression to predict companies financial bankruptcy in Tehran stock exchanges. *International Journal of Emerging Research in Management & Technology, 2(9)*, 7–16.
- Houghton, K. A., & Woodliff, D. R. (1987). Financial ratios: The prediction of corporate 'success' and failure. *Journal of Business Finance & Accounting*, 14(4), 537–554.
- Hwang, R.-C., Cheng, K. F., & Lee, J. C. (2007). A semiparametric method for predicting bankruptcy. *Journal of Forecasting*, 26(5), 317–342.
- Iazzolino, G., Migliano, G., & Gregorace, E. (2013). Evaluating intellectual capital for supporting credit risk assessment: An empirical study. *Investment Management and Financial Innovations*, *10(2)*, 44–54.
- Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. *The Accounting Review, 79(4)*, 1011–1038.
- Jostarndt, P., & Sautner, Z. (2008). Financial distress, corporate control, and management turnover. *Journal of Banking & Finance, 32(10)*, 2188–2204.

- Jovanovic, B., & MacDonald, G. M. (1994). The life cycle of a competitive industry. *Journal of Political Economy, 102(2),* 322–347.
- Jovanovic, B. (1982). Selection and the evolution of industry. *Econometrica*, *50(3)*, 649–670.
- Kaiser, K. M. J. (1996). European bankruptcy laws: Implications for corporations facing financial distress. *Financial Management*, *25(3)*, 67–85.
- Kane, G. D., Richardson, F. M., & Meade, N. L (1998). Rank transformation and the prediction of corporate failure. *Contemporary Accounting Research*, *15(2)*, 145-166.
- Keasey, K., & Watson, R. (1991). Financial distress prediction models: A review of their usefulness. *British Journal of Management*, 2(2), 89–102.
- Kim, H., & Gu, Z. (2006). Predicting restaurant bankruptcy: A logit model in comparison with a discriminant model. *Journal of Hospitality & Tourism Research, 30(4),* 474–493.
- Kim, M. H., & Partington, G. (2015). Dynamic forecasts of financial distress of Australian firms. *Australian Journal of Management, 40 (1),* 135–160.
- Klecka, W. R. (1980). *Discriminant analysis*. SAGE University Papers, Series: Quantitative Applications in the Social Sciences, Newbury Park, CA: Sage.
- Ko, L.-J., Blocher, E. J., & Lin, P. P. (2001). Prediction of corporate financial distress: An application of the composite rule induction system. *The International Journal of Digital Accounting Research*, 1(1), 69–85.
- Koller, T., Goedhart, M., & Wessels, D. (2010). *Valuation: Measuring and managing the value of companies*. Hoboken, NJ: John Wiley.
- Korol, T., & Korodi, A. (2011). An evaluation of effectiveness of fuzzy logic model in predicting the business bankruptcy. *Romanian Journal of Economic Forecasting*, *14(3)*, 92–107.
- Krueger, D. A., & Willard, G. E. (1991). Turnarounds: A process, not an event. Academy of Management Best Papers *Proceedings*, 26-30.
- Laitinen, E. K., & Laitinen, T. (2000). Bankruptcy prediction: Application of the Taylor's expansion in logistic regression. International Review of Financial Analysis, 9(4), 327–349.

- Laitinen, E. K., & Laitinen, T. (1998). Cash management behavior and failure prediction. *Journal of Business Finance & Accounting*, 25(7-8), 893–919.
- Lau, A. H.-L. (1987). A five-state financial distress prediction model. *Journal of Accounting Research*, 25(1), 127–138.
- Laurent, C. R. (1979). Improving the efficiency and effectiveness of financial ratio analysis. *Journal of Business Finance & Accounting*, 6(3), 401–413.
- Lennox, C. S. (1999b). The accuracy and incremental information content of audit reports in predicting bankruptcy. *Journal of Business Finance & Accounting, 26(5-6),* 757–778.
- Lennox, C. (1999a). Identifying failing companies: A re-evaluation of the logit, probit and DA approaches. *Journal of Economics and Business*, *51(4)*, 347–364.
- Li, H., & Sun, J. (2011). Predicting business failure using forward ranking-order case-based reasoning. *Expert Systems with Applications, 38(4),* 3075–3084.
- Libby, R. (1975). Accounting ratios and the prediction of failure: Some behavioural evidence. *Journal of Accounting Research*, 13(1), 150–161.
- Liou, D.-K., & Smith, M. (2007). Macroeconomic variables and financial distress. *Journal of Accounting, Business & Management, 14(1), 17–31.*
- Low, S.-W., Nor, F. M., & Yatim, P. (2011). Predicting corporate financial distress using the logit model: The case of Malaysia. *Asian Academy of Management Journal, 6(1),* 49–61.
- Löffler, G., & Posch, P. N. (2007). Credit risk modeling using Excel and VBA. West Sussex, England: Wiley UK.
- Marchesini, R., Perdue, G., & Bryan V. (2004). Applying bankruptcy prediction models to distressed high yield bond issues. *The Journal of Fixed Income*, *13(4)*, 50–56.
- McKee, T. E. (2007). Altman's 1968 bankruptcy prediction model revisited via genetic programming: New wine from an old bottle or a better fermentation process? *Journal of Emerging Technologies in Accounting*, 4(1), 87–101.
- McKee, T. (2003). Rough sets bankruptcy prediction models versus auditor signaling rates. *Journal of Forecasting, 22(8),* 569–586.

- McKee, T., & Lensberg, T. (2002). Genetic programming and rough sets: A hybrid approach to bankruptcy prediction. *European Journal of Operational Research, 138(2),* 436–451.
- McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory. *International Journal of Intelligent Systems in Accounting, Finance & Management, 9(3),* 159–173.
- McKee, T. E. (1995). Predicting bankruptcy via induction. *Journal of Information Technology, 10(1),* 26–36.
- Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. *Journal of Accounting Research, 22(1),* 380–395.
- Metz, C. E. (1978). Basic principles of ROC analysis. *Seminars in Nuclear Medicine*, 8(4), 283–298.
- Min, J. H., & Lee, Y.-C. (2008). A practical approach to credit scoring. *Expert Systems with Applications*, 35(4), 1762 1770.
- Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameter. Expert Systems with Applications, 28(4), 603–614.
- Min, S.-H., Lee, J., & Han, I. (2006). Hybrid genetic algorithms and support vector machines for bankruptcy prediction. *Expert Systems with Applications, 31(3),* 652–660.
- Mohamad, I. (2005). Bankruptcy prediction model with ZETAC optimal cut-off score to correct type I errors. *Gadjah Mada International Journal of Business, 7(1),* 41–68.
- Mossman, C. E., Bell, G. B., Swartz, M. L., & Turtle, H. (1998). An empirical comparison of bankruptcy models. *The Financial Review*, *33(2)*, 35–54.
- Moulton, W. N., & Thomas, H. (1993). Bankruptcy as a deliberate strategy: Theoretical considerations and empirical evidence. *Strategic Management Journal*, *14*(*2*), 125–135.
- Moyer, S. G. (2005). *Distressed debt analysis: Strategies for speculative investors*. Boca Raton, FL: Ross Publishing.
- Nam, J.-H., Jinn, T. (2000). Bankruptcy prediction: Evidence from Korean listed companies during the IMF crisis. *Journal of International Financial Management and Accounting*, *11(3)*, 178–197.
- Nanda, S., & Pendharkar, P. (2001). Linear models for minimizing misclassification costs in bankruptcy prediction. International Journal of Intelligent Systems in Accounting, Finance & Management, 10(3), 155–168.

- Neophytou, E., & Mar Molinero, C. (2004). Predicting corporate failure in the UK: A multidimensional scaling approach. Journal of Business Finance & Accounting, 31(5-6), 677–710.
- Neves, J. C., & Vieira, A. (2006). Improving bankruptcy prediction with hidden layer learning vector quantization. *European Accounting Review, 15(2), 253–271*.
- Norton, C. L., & Smith, R. E. (1979). A comparison of general price level and historical cost financial statements in the prediction of bankruptcy. *The Accounting Review*, *54*(*1*), 72–87.
- Ogawa, S. (2002). Trust evaluation model for changing Japanese bankruptcy chances. *Journal of Contingencies and Crisis Management*, *10(2)*, 63–72.
- Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. *Journal of Accounting Research, 18(1),* 109–131.
- Pacey, J. W., & Pham, T. M. (1990). The predictiveness of bankruptcy models: Methodological problems and evidence. *Australian Journal of Management*, *15(2)*, 315–337.
- Pang, J., & Kogel, M. (2013). Retail bankruptcy prediction. *American Journal of Economics and Business Administration*, 5(1), 29–46.
- Paradi, J. C., Asmild, M., & Simak, P. C. (2004). Using DEA and worst practice DEA in credit risk evaluation. *Journal of Productivity Analysis*, *21(2)*, 153–165.
- Pervan, I., Pervan, M., & Vukoja, B. (2011). Prediction of company bankruptcy using statistical techniques Case of Croatia. *Croatian Operational Research Review, 2(1),* 158–167.
- Pindado, J., Rodrigues, L., & de la Torre, C. (2008). Estimating financial distress likelihood. *Journal of Business Research*, 61(9), 995–1003.
- Platt, H. D., & Platt, M. B. (2008). Financial distress comparison across three global regions. *Journal of Risk and Financial Management*, 1(1), 129–162.
- Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. *Journal of Economics and Finance, 26(2),* 184–199.
- Platt, H. D., Platt, M. B., & Pedersen. J. G. (1994). Bankruptcy discrimination with real variables. *Journal of Business Finance* & *Accounting*, *21(4)*, 491–510.

- Pohlman, R. A., & Hollinger, R. D. (1981). Information redundancy in sets of financial ratios. *Journal of Business Finance & Accounting*, 8(4), 511–528.
- Pompe, P. P., & Bilderbeek, J. (2005). Bankruptcy prediction: The influence of the year prior to failure selected for model building and the effects in a period of economic decline. *Intelligent Systems in Accounting, Finance and Management, 13(2),* 95–112.
- Porath, D. (2011). Scoring models for retail exposures. In B. Engelmann, & R. Rauhmeier (Eds.), *The Basel II risk parameters: Estimation, validation, stress testing with applications to loan risk management* (pp. 25-36). Berlin-Heidelberg: Springer.
- Poston, K. M., Harmon, K. W., & Gramlich, J. D. (1994). A test of financial ratios as predictors of turnaround versus failure among financially distressed firms. *Journal of Applied Business Research*, 10(1), 41–56.
- Pretorius, M. (2009). Defining business decline, failure and turnaround: A content analysis. South African Journal of Entrepreneurship and Small Business Management, 2(1), 1 16.
- Pretorius, M. (2008). Critical variables of business failure: A review and classification framework. *South African Journal of Economic and Management Sciences*, *11(4)*, 408-430.
- Raykov, T., & Marcoulides, G. A. (2008). *An introduction to applied multivariate analysis*. New York, NY: Taylor & Francis.
- Rose-Green, E., & Dawkins, M. (2002). Strategic bankruptcies and price reactions to bankruptcy filings. *Journal of Business Finance & Accounting*, 29(9-10), 1319–1335.
- Santos, M. F., Cortez, P., Pereira, J., & Quintela, H. (2006). Corporate bankruptcy prediction using data mining techniques. *WIT Transactions of Information and Communication Technologies*, *37*, 349–357.
- Sen, T. K., Ghandforoush, P., & Stivason, C. T. (2004). Improving prediction of neural networks: A study of two financial prediction tasks. *Journal of Applied Mathematics and Decision Sciences*, 8(4), 219–233.
- Shah, J. R., & Murtaza, M. B. (2000). A neural network based clustering procedure for bankruptcy prediction. *American Business Review*, *18*(*2*), 80–86.
- Sheppard, J. P. (1994). Strategy and bankruptcy: An exploration into organizational death. *Journal of Management, 20(4),* 795–833.

- Shin, K-S., Lee, T. S., & Kim, H.-j. (2005). An application of support vector machines in bankruptcy prediction model. *Expert Systems with Applications, 28(1),* 127–135.
- Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. *The Journal of Business, 74(1),* 101–124.
- Silva, D. A. P., Stam, A., & Neter, J. (2002). The effects of misclassification cost and skewed distributions in two-group classification. *Communication in Statistical Simulation*, *31(3)*, 401-423.
- Situm, M. (2015b). The relevance of employee-related ratios for early detection of corporate crises. *Economic and Business Review*, *16(3)*, 279-314.
- Situm, M. (2015a). Recovery from distress and insolvent: A comparative analysis using accounting ratios. *Proceedings of the* 6th Global Conference on Managing in Recovering Markets, GCMRM 2015, 589-606.
- Solnik, B., & McLeavey, D. (2009). *Global investments*. Boston, MA: Pearson Education Inc.
- Stanišić, N., Mizdraković, V., & Knežević, G. (2013). Corporate bankruptcy prediction in the Republic of Serbia. *Industrija*, *41(4)*, 145–159.
- Subhash, S. (1996). *Applied multivariate techniques*. New York, NY: Wiley.
- Sudarsanam, S., & Lai, J. (2001). Corporate financial distress and turnaround strategies: An empirical analysis. *British Journal of Management, 12(3),* 183–199.
- Sun, L. (2007). A re-evaluation of auditor's opinios versus statistical model in bankruptcy prediction. *Review of Quantitative Finance and Accounting*, *28*(*1*), 55–78.
- Sung, T. K., Chang, N., & Lee, G. (1999). Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. *Journal of Management Information Systems*, *16*(*1*), 63–85.
- Taffler, R. J. (1984). Empirical models for the monitoring of UK corporations. *Journal of Banking and Finance*, 8(2), 199-227.
- Taffler, R. J. (1983). The assessment of company solvency and performance using a statistical model. *Accounting and Business Research*, *13(52)*, 295-308.

- Theodossiou, P., Kahya, E., Saidi, R., & Philippatos, G. (1996). Financial distress and corporate acquisitions: Further empirical evidence. *Journal of Business Finance & Accounting*, 23(5), 699–719.
- Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit scoring and its applications. Philadelphia: SIAM
- Thornhill, S., & Amit, R. (2003). Learning about failure: Bankruptcy, firm age, and the resource-based view. *Organization Science*, *14(5)*, 497–509.
- Tirapat, S., & Nittayagasetwat, A. (1999). An investigation of Thai listed firms' financial distress using macro and micro variables. *Multinational Finance Journal*, *3*(*2*), 103–125.
- Trabelsi, S., He, R., He, L., & Kusy, M. (2015). A comparison of Bayesian, hazard and mixed logit model of bankruptcy prediction. *Computational Management Science*, *12(1)*, 81-97.
- Tsai, B.-H. (2013). An early warning system of financial distress using multinomial logit models and a bootstrapping approach. *Emerging Markets Finance & Trade, 49(2),* 43–69.
- Tsakonas, A., Dounias, G., Doumpos, M., & Zopounidis, C. (2006). Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. *Expert Systems with Applications, 30(3),* 449–461.
- Tucker, J. W., & Moore. W. T. (1999). Reorganization versus liquidation decisions for small firms. *Financial Practice and Education*, *9*(*2*), 70–76.
- Turetsky, H. F., & McEwen, R. A. (2001). An empirical investigation of firm longevity: A model of the ex ante predictors of financial distress. *Review of Quantitative Finance and Accounting*, *16(4)*, 323–343.
- Vlachos, D., & Tolias, Y. A. (2003). Neuro-fuzzy modeling in bankruptcy prediction. *Yugoslav Journal of Operations Research*, *13(2)*, 165–174.
- Ward, T. J. (1999). A review of financial distress research methods and recommendations for future research. *Academy of Accounting and Financial Studies Journal*, *3*(1), 160–178.
- Ward, T. J. (1994). An empirical study of the incremental predictive ability of Beavers' naïve operating flow measure using four-state ordinal models of financial distress. *Journal of Business Finance & Accounting, 21(4),* 547–561.
- Whitaker, R. B. (1999). The early stages of financial distress. *Journal of Economics and Finance, 23(2),* 123–133.

- Whittred, G., & Zimmer, I. (1984). Timeliness of financial reporting and financial distress. *The Accounting Review, 59(2)*, 287–295.
- Wilson, N., Chong, K. W., & Peel, M. J. (1995). Neural network simulation and the prediction of corporate outcomes: Some empirical findings. *International Journal of Economics of Business*, 2(1), 31–50.
- Yeh, C.-C., Chi, D.-J., & Hsu, M.-F. (2010). A hybrid approach of DEA, rough set and support vector machines for business failure prediction. *Expert Systems with Applications*, *37(2)*, 1535–1541.
- Youn, H., & Gu, Z. (2010). Predict US restaurant firm failures: The artificial neural network model versus logistic regression model. Tourism and Hospitality Research, 10(3), 171–187.
- Zhang, G., Hu, M. Y., Patuwo, E. B., & Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. *European Journal of Operational Research*, *116*(1), 16–32.
- Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. *Journal of Accounting Research, 22, Supplement,* 59–82.